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Stochastic resonance and symmetry breaking in a one-dimensional system
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We derive and discuss properties of an exact solution for the average time for trapping of a Brownian
particle driven by a random, asymmetric but unbiased, telegraph signal. The particle moves along a line
segment terminated by either two traps or a trap and a reflecting point. Numerical results suggest that stochastic
resonance, defined as a nonmonotonic behavior of the mean trapping time, is absent in the first case but present
in the second. This generalizes a result obtained earlier by Doering and Gadoua@Phys. Rev. Lett.69, 2318
~1992!# and implies that symmetry breaking alone does not necessarily create stochastic resonance.
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I. INTRODUCTION

Stochastic resonance~SR! is a widely investigated phe
nomenon with an increasing number of applications in ph
ics, chemistry, and biology@1#. Although the terminology is
not universally agreed on, SR generally refers to an enha
ment, through an increase of noise amplitude, of some de
able characteristic of the output of a dynamical system s
ject to either a periodic or random field. Differen
manifestations of SR have been demonstrated in specific
ear and nonlinear systems by analytic methods, and h
also been shown to occur experimentally in biological@2#
and physical@3# systems. However, there is still incomple
understanding of the conditions that may be necessar
produce SR in spite of the large variety of models of SR t
have been analyzed. Here we define SR to be a nonm
tonic dependence of an output signal on one or more par
eters that characterize an external driving force. A desc
tion of some systems producing this generalized form of
is given in @3#.

Our general identification of SR with nonmonotonic pa
metric variation allows for the occurrence of SR in som
linear systems. A simple example of SR in a linear system
that of one-dimensional diffusion on a segment termina
by one or two traps with a periodic forcing term@4#. This
system may be said to be characterized by two states, on
which the particle is untrapped and the second in which i
trapped. Both the first and second moments of the time
trapping for this system have been shown to exhibit SR@4#.

In order to have SR in a system, one apparently nee
characteristic time or, equivalently, an external frequency
sociated with the driving force. When a one-dimensional d
fusive system with one or two traps is also driven by
external periodic field, the mean first-passage time~MFPT!
and the variance of the trapping time has been shown to
nonmonotonically as a function of both the frequency@4# and
amplitude@5# of the periodic force. However, the extern
force need not be periodic to define a characteristic
quency@3#, since this can be defined as the reciprocal of
fluctuation rate. This raises the possibility of having SR in
system driven by two different types of noise, e.g., the co
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bination of white and colored noise. The first study of pro
erties of such systems was reported on by Balakrishnan,
den Broeck, and Ha¨nggi @6# but the topic of SR in such
systems was not raised. A generalization of this system
investigated by Doering and Gadoua@7#, who considered the
jumps in a linear double-well potential when the slope of t
potential randomly fluctuates between two values at a ratg.
Somewhat surprisingly, SR in the form of a nonmonoton
dependence of the MFPT ong occurred when one of the
boundaries was absorbing and the other reflecting@7#, but
not when both boundary points were absorbing@8#. In the
present paper we reanalyze the system studied in Ref.@6#,
showing that it, too, appears not to exhibit resonant beha
when the end points are both traps, but does exhibit SR w
one endpoint is a trap and the second is a reflecting poin

Because of the large variety of resonant behavior, it
hardly surprising that globally necessary conditions for
occurrence of SR have not been identified. In particular,
role of nonsymmetric boundary conditions remains uncle
as is the type and degree of ‘‘symmetry breaking’’ requir
in the definition of the dynamical system in order for it
exhibit SR. An indication of some of the difficulties tha
arise in defining what is meant by symmetry breaking
found in a model whose properties were studied by Brey
Cassado-Pascual@9#. These investigators studied the prope
ties of a random walk on a finite interval terminated by o
or two traps. This model is somewhat similar to the model
Fletcher, Havlin, and Weiss@4#, but instead of having the
system driven by an oscillating field, the authors allow t
system to evolve on a line in which at any time each site
one of two transition rates, these being allowed to chang
random times. In the system of Brey and Cassado-Pasc
SR is found to occur when one of the endpoints is reflect
and the other absorbing, but not when both are absorbin
in the paper by Doering and Gadoua@7#. In this paper we
analyze a model in which the deterministic telegraph sig
is replaced by a random one. One result of the present p
is the suggestion that SR does not occur with two absorb
points even with an asymmetric but unbiased telegraph
nal, but that SR does occur when one of the boundarie
absorbing and the second reflecting as in Ref.@7#.
3713
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II. THE SYSTEM DEFINED

We consider a stochastic one-dimensional motionx(t)
whose evolution is determined by a sum of two types
noise, one of which is Gaussian white noise and the sec
an asymmetric random telegraph signal. The state vari
x(t) in the overdamped case therefore satisfiesẋ5h(t)
1 f (t) where f (t) is zero-mean uncorrelated white noi
whose second-order moment properties are^ f (t) f (t8)&
52Dd(t2t8), in which D is a diffusion constant. The sec
ond component of the noise,h(t), is chosen to be an asym
metric randomly switching telegraph signal that can assu
either of the valuesv1 or 2v2 where both velocities are
positive.

A simple model whose properties can be determined
one in which switching between the two states determined
the telegraph signal occurs at random spaced times w
properties are described by negative exponential probab
densitiesq i(t)5Ti

21 exp(2t/Ti), i 51 or 2 so thatTi is the
average time spent by the particle in a single sojourn in s
i . The random telegraph signalh(t) can also be defined in
terms of its first two moments, viz.,

^h~ t !&5
v1T12v2T2

T11T2
,

^h~ t !h~ t8!&5^h~ t !&^h~ t8!&1
T1T2~v12v2!2

~T11T2!2 e2ut2t8u/T,

~1!

in which T21[T1
211T2

21 is a relaxation rate for the corre
lation function.

We calculate the MFPT,t(x0), for the time to trapping of
a particle, initially atx0 , diffusing on a line segment~0, L!
terminated by either two traps or a single trap and a refl
ing point.

III. ANALYSIS

A. Basic equations

Let t1(x0) be the MFPT for a particle which is initially
located atx0 and whose initial velocity isv1, with a similar
definition for t2(x0). For convenience, we assume that t
two states are initially equally likely. The coupled set
equations fort1(x0) andt2(x0) is

D
d2t1

dx0
2 1v1

dt1

dx0
1

t2

T2
2

t1

T1
52

1

2
, ~2!

D
d2t2

dx0
2 2v2

dt2

dx0
1

t1

T1
2

t2

T2
52

1

2
, ~3!

where the initial equally likely occurrence of both states
quires the right-hand sides of these equations to be equ

For purposes of analysis, it is convenient to replace E
~2! and~3! by an equivalent set for the unconditional MFP
t(x0) and an auxiliary functionG(x0) having the dimensions
of length. These are defined by
f
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t~x0!5t1~x0!1t2~x0!,
~4!

G~x0!5v1t1~x0!2v2t2~x0!.

By solving this set of equations fort1(x0) and t2(x0) in
terms oft(x0) and G(x0) and adding and subtracting Eq
~2! and ~3!, we can replace that set of equations by

Dt91G8521, ~5!

DG91
D

2
~v22v1!t91S v12v2

2 DG81v1v2t8

2S 1

T1
1

1

T2
DG1S v1

T2
2

v2

T1
D t50. ~6!

When the two endpoints are traps andDÞ0, Eqs.~5! and~6!
are to be solved subject to the boundary conditionst(0)
5t(L)5G(0)5G(L)50. Whenx050 is a trapping point
andx05L a reflecting one the spatial derivatives oft andG
vanish atx05L. The resulting set of equations are just tho
originally studied by Doering and Gadoua@7#.

Equations ~5! and ~6! can be combined into a singl
fourth-order differential equation fort(x0). We consider
only the case in which the time-averaged mean bias is e
to 0 or ^h(t)&50. The resulting equation is

D2t-81D~v12v2!t-2Fv1v21
D

T Gt95
1

T
. ~7!

This is a linear differential equation solvable by elementa
methods. The solutions themselves are rather formidable
are therefore relegated to the Appendix.

B. Summary of numerical results

The exact expressions given in the Appendix are so co
plicated that we were unable to rigorously prove the non
istence of SR in the two-trap case. However, properties
t(x0) considered as functions ofv1 , v1 /v2 , andT were
investigated over a wide range of these parameters, find
no indication of SR in any of them when the two endpoin
of the line are traps. If this is generally true, it follows th
the existence of two states alone is insufficient to produce
just as was found by Doering and Gadoua@7# and Brey and
Casado-Pascual@9#.

Another type of symmetry breaking is introduced by a
suming that the boundary conditions at the two endpo
differ. Here, again in agreement with the investigations
Refs. @7# and @9#, one indeed finds SR. Figure 1 show
curves oft(1/2) as a function of the switching rateT for
different amplitudes of the velocities, which are taken to
equal in our calculations (v15v2). Because the SR is du
to the coherence of motion as in Ref.@4#, it becomes more
pronounced as either the noise or velocity amplitudes
crease. In Fig. 2 we again plott(1/2) as a function ofT, this
time allowing thev ’s to differ so that yet another source o
symmetry breaking is introduced. Because of the asymm
in the endpoints, the curves corresponding tov1 /v252 dif-
fer from those whenv1 /v251/2. That is to say, asymmetr
in the velocities can serve to either increase or lessen
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MFPT, but does not change the fact of whether SR doe
does not occur.

Figures 1 and 2 have demonstrated nonmonotonic be
ior in t(1/2) as a function ofT for different conditions im-
posed on the velocities. Nonmonotonic behavior also ex
as a function either as the amplitude of the velocity chan
in the case of a symmetric telegraph signal@Fig. 3~a!# or as
the degree of asymmetry between the two velocities chan
as illustrated by the curves in Fig. 3~b!. Finally, Fig. 3~c!
shows the SR obtained fort(1/2) as a function ofv2 for
different values ofv1 /T2 @10–13#.

IV. CONCLUDING REMARKS

What we have shown is that for the system studied h
symmetry-breaking is required to produce SR but the s
cific parameter in which symmetry breaking occurs do
matter. Here we have considered various aspects of cohe
SR, in terms of the MFPT for the survival of a particl
Similar problems arise in the more commonly used definit
of SR in problems in terms of motion in double-well system
subject to the combination of periodic and random sign

FIG. 1. Curves oft(1/2) plotted as a function of log10(1/T) for
different values ofv5v15v2 . The numerical results indicate tha
in each case SR will exist, but larger velocities lead to more not
able minima in the curves.

FIG. 2. Curves oft(1/2) plotted as a function of log10(1/T) for
v151 for different values ofv2 . SR exists in each of the case
shown.
or
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@14#. These authors concluded that SR does not occur in
presence of a periodic perturbation. Another example ma
ing the same point is that of motion in a double-well poten
tial subject to the combination of multiplicative noise and
multiplicative periodic force as studied by Dykmanet al.
@15#. These authors found that SR could be produced
fixing the two wells to have different depths. As a final re
mark, it might also be interesting to investigate whether S
appears in a system in which one of the boundaries is p
tially, rather than fully, reflecting.

-

FIG. 3. The existence of SR fort(1/2) considered as functions
of the velocities.~a! t(1/2) plotted as a function of log10(v1) for
the symmetric telegraph signal showing SR in each of the indica
three cases.~b! SR demonstrated for the asymmetric telegraph si
nal with differing ratios of the velocities.~c! t(1/2) plotted as a
function of log10(v2) again demonstrating the existence of resona
behavior.
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APPENDIX: EXPRESSIONS FOR t„x0… FOR THE TWO
TYPES OF BOUNDARY CONDITIONS

1. Two traps

All of the equations here are expressed in terms of dim
sionless variables, in which time is measured in terms
L2/D and lengths are given in terms ofL. This scaling is
equivalent to settingD5L51. The most general solution o
Eq. ~7! subject to trapping boundary conditions at both en
of the line will be expressed in terms of the functions

R6~z!5
exp~l6z!21

exp~l6!21
, 0<z<1,

~A1!

B65
l6

T
,

wherel65a6b, the parametersa andb being
s,

.

-
f

s

a5
~v22v1!

2D
5

v1

2D S T1

T2
21D , ~A2!

b5
1

2D Fv1
2 S 11

T1

T2
D 2

1
4D

T G1/2

.

Equation~A1! is written in terms of dimensionless variable
The functionsR6(z) clearly satisfyR6(0)50 and R6(1)
51. The full expression fort(x0) is

t~x0!5
gx0~12x0!

2T
2

gv1v2

2b
@R1~x0!2R2~x0!#

1CFx01
l2R1~x0!2l1R2~x0!

2b G , ~A3!

whereg5(v1v211/T)21 andC is
C5g

b~v12v2!S 1

T
2v1v2D ~coshb2cosha!2

v1v2

T
~a sinhb2b sinha!

2bv1v2~coshb2cosha!1~gT!21 sinhb
. ~A4!
It is readily verified thatt(0)5t(1)50.

2. One trap and a reflecting point

Here we set the trap atz50 and the reflecting point atz
51. Define the constants

Q5v1v2T, S5Q1aT~Q21!, g5T/~11Q!, ~A5!

B5l6
2 exp~l6!, A65l61QB6 /l6 ,
V65SB61QA6

and the functionsU6(x0)5exp(l6x0)2x0B621. The for-
mula for t(x0) can be written in terms of these as

t~x0!5g
x0~22x0!

2T
1g

V2U1~x0!2V1U2~x0!

T~A1B22A2B1!
,

~A6!

generalizing a result given by Doering and Gadoua@7#.
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