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Stochastic resonance and symmetry breaking in a one-dimensional system
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We derive and discuss properties of an exact solution for the average time for trapping of a Brownian
particle driven by a random, asymmetric but unbiased, telegraph signal. The particle moves along a line
segment terminated by either two traps or a trap and a reflecting point. Numerical results suggest that stochastic
resonance, defined as a nonmonotonic behavior of the mean trapping time, is absent in the first case but present
in the second. This generalizes a result obtained earlier by Doering and G&loytsa Rev. Lett69, 2318
(1992] and implies that symmetry breaking alone does not necessarily create stochastic resonance.
[S1063-651%97)13509-1

PACS numbds): 05.40:+j

I. INTRODUCTION bination of white and colored noise. The first study of prop-
erties of such systems was reported on by Balakrishnan, van
Stochastic resonand&R) is a widely investigated phe- den Broeck, and Haygi [6] but the topic of SR in such
nomenon with an increasing number of applications in physsystems was not raised. A generalization of this system was
ics, chemistry, and biologll]. Although the terminology is investigated by Doering and Gadoj#d, who considered the
not universally agreed on, SR generally refers to an enhancgamps in a linear double-well potential when the slope of the
ment, through an increase of noise amplitude, of some desipotential randomly fluctuates between two values at ayate
able characteristic of the output of a dynamical system subSomewhat surprisingly, SR in the form of a nonmonotonic
ject to either a periodic or random field. Different dependence of the MFPT om occurred when one of the
manifestations of SR have been demonstrated in specific lirboundaries was absorbing and the other reflecfifig but
ear and nonlinear systems by analytic methods, and haveot when both boundary points were absorbjg8g In the
also been shown to occur experimentally in biologika]l  present paper we reanalyze the system studied in [Bgf.
and physica[3] systems. However, there is still incomplete showing that it, too, appears not to exhibit resonant behavior
understanding of the conditions that may be necessary towhen the end points are both traps, but does exhibit SR when
produce SR in spite of the large variety of models of SR thabne endpoint is a trap and the second is a reflecting point.
have been analyzed. Here we define SR to be a nonmono- Because of the large variety of resonant behavior, it is
tonic dependence of an output signal on one or more paranardly surprising that globally necessary conditions for the
eters that characterize an external driving force. A descripeccurrence of SR have not been identified. In particular, the
tion of some systems producing this generalized form of SRole of nonsymmetric boundary conditions remains unclear,
is given in[3]. as is the type and degree of “symmetry breaking” required
Our general identification of SR with nonmonotonic para-in the definition of the dynamical system in order for it to
metric variation allows for the occurrence of SR in someexhibit SR. An indication of some of the difficulties that
linear systems. A simple example of SR in a linear system isrise in defining what is meant by symmetry breaking is
that of one-dimensional diffusion on a segment terminatedound in a model whose properties were studied by Brey and
by one or two traps with a periodic forcing terfd]. This = Cassado-Pascuf®]. These investigators studied the proper-
system may be said to be characterized by two states, one iies of a random walk on a finite interval terminated by one
which the particle is untrapped and the second in which it isor two traps. This model is somewhat similar to the model of
trapped. Both the first and second moments of the time téletcher, Havlin, and WeisB4], but instead of having the
trapping for this system have been shown to exhibitf8R  system driven by an oscillating field, the authors allow the
In order to have SR in a system, one apparently needs system to evolve on a line in which at any time each site has
characteristic time or, equivalently, an external frequency asene of two transition rates, these being allowed to change at
sociated with the driving force. When a one-dimensional dif-random times. In the system of Brey and Cassado-Pascual,
fusive system with one or two traps is also driven by anSR is found to occur when one of the endpoints is reflecting
external periodic field, the mean first-passage ti&PT) and the other absorbing, but not when both are absorbing as
and the variance of the trapping time has been shown to variyn the paper by Doering and Gado{id. In this paper we
nonmonotonically as a function of both the frequefglyand  analyze a model in which the deterministic telegraph signal
amplitude[5] of the periodic force. However, the external is replaced by a random one. One result of the present paper
force need not be periodic to define a characteristic freis the suggestion that SR does not occur with two absorbing
qguency[ 3], since this can be defined as the reciprocal of thegoints even with an asymmetric but unbiased telegraph sig-
fluctuation rate. This raises the possibility of having SR in anal, but that SR does occur when one of the boundaries is
system driven by two different types of noise, e.g., the comabsorbing and the second reflecting as in Ref.
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IIl. THE SYSTEM DEFINED (Xg) =74 (Xo) + 7 (Xo), @

We consider a stochastic one-dimensional motigh)
whose evolution is determined by a sum of two types of [ (%) =v 471 (Xo) =v -7 (Xo)-
noise, one of which is Gaussian white noise and the second ) ) . .
an asymmetric random telegraph signal. The state variablgY SOlving this set of equations far, (o) and 7_(Xo) in
x(t) in the overdamped case therefore satisfes(t) terms of 7(xg) andI'(xy) and adding and sqbtractlng Egs.
+f(t) where f(t) is zero-mean uncorrelated white noise (2) @nd(3), we can replace that set of equations by
whose second-order moment properties dfét)f(t’)) DA 4+T = —1 ®)
=2D§(t—t'), in which D is a diffusion constant. The sec- o
ond component of the noiseyt), is chosen to be an asym-

metric randomly switching telegraph signal that can assume DI+ E (v_—v )7+ ( Vi~V T+v.v_ 7
either of the valuew ., or —v_ where both velocities are 2 " 2 "
positive. L

A simple model whose properties can be determined is B el PO U_> -0 ©6)
one in which switching between the two states determined by T, T- T T4

the telegraph signal occurs at random spaced times whose )

properties are described by negative exponential probabilityvhen the two endpoints are traps éDe-0, Egs.(5) and(6)
densitiesd; (t) =T, * exp(~t/T), i=+ or — so thatT; isthe = &€ 0 be solved subject to the boundary conditia(8)
average time spent by the particle in a single sojourn in stat& 7(L) =I'(0)=I'(L)=0. Whenx,=0 is a trapping point

i. The random telegraph signa(t) can also be defined in andxo=L a reflecting one the spatial derivativesoandI
terms of its first two moments, Viz., vanish atxo=L. The resulting set of equations are just those
originally studied by Doering and Gadolial.

Equations(5) and (6) can be combined into a single
fourth-order differential equation for(xy,). We consider
only the case in which the time-averaged mean bias is equal
to 0 or(7(t))=0. The resulting equation is

U+T+_U_T_
<77(t)>—1-+4_—1,

T.T (v, —v_)? ,
() = (O 1)+ - eI

)

1
D27 +D(v,—v )7 —|v,v_+= 7"’=?. (7)

T

, , 1, a1 ) This is a linear differential equation solvable by elementary
in which T""=T_"+T_" is a relaxation rate for the corre- meathods. The solutions themselves are rather formidable and

lation function. . _ are therefore relegated to the Appendix.
We calculate the MFPTz(X,), for the time to trapping of

a particle, initially atx,, diffusing on a line segmer(D, L)
terminated by either two traps or a single trap and a reflect-
ing point. The exact expressions given in the Appendix are so com-
plicated that we were unable to rigorously prove the nonex-
istence of SR in the two-trap case. However, properties of
IIIl. ANALYSIS 7(Xp) considered as functions of, , v, /v_, andT were
A. Basic equations investigated over a wide range of these parameters, finding
no indication of SR in any of them when the two endpoints
N Y . o of the line are traps. If this is generally true, it follows that
located aix, and whose initial velocity ig ,, with a similar  yhe existence of two states alone is insufficient to produce SR
definition for 7_ (_XQ)_. For convenience, we assume that thejust as was found by Doering and Gadd@ and Brey and
two states are initially equally likely. The coupled set of Casado-Pascufd].

equations forr, (o) and 7 (o) is Another type of symmetry breaking is introduced by as-

B. Summary of numerical results

Let 7, (Xo) be the MFPT for a particle which is initially

d?7, dr, 1. =, 1 suming that the boundary conditions at the two endpoints
—tv, — Ft————=—=, (2) differ. Here, again in agreement with the investigations in
dxg dxo T- T. 2 Refs. [7] and [9], one indeed finds SR. Figure 1 shows
curves of7(1/2) as a function of the switching rafe for
d2r. dr_ 1, 1. 1 different amplitudes of the velocities, which are taken to be

D 2 Y- d—+ T T3 (3 equal in our calculationsv(, =v _). Because the SR is due
X0 %o * - to the coherence of motion as in R¢4], it becomes more
pronounced as either the noise or velocity amplitudes in-
where the initial equally likely occurrence of both states re-crease. In Fig. 2 we again plef1/2) as a function of, this
guires the right-hand sides of these equations to be equal. time allowing thev’s to differ so that yet another source of
For purposes of analysis, it is convenient to replace Egssymmetry breaking is introduced. Because of the asymmetry
(2) and(3) by an equivalent set for the unconditional MFPT in the endpoints, the curves corresponding tdv _ =2 dif-
7(Xo) and an auxiliary functio’(x,) having the dimensions fer from those whew , /v _=1/2. That is to say, asymmetry
of length. These are defined by in the velocities can serve to either increase or lessen the
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FIG. 1. Curves ofr(1/2) plotted as a function of Iqg(1/T) for 1.00
different values ob =v , =v _ . The numerical results indicate that
in each case SR will exist, but larger velocities lead to more notice 0.80 V01
able minima in the curves. -
vjv_=03
0.60
a v v_=1
¥
MFPT, but does not change the fact of whether SR does ¢ = 4 vv_=3
does not occur. e uet0
Figures 1 and 2 have demonstrated nonmonotonic behar -
ior in 7(1/2) as a function off for different conditions im- |
posed on the velocities. Nonmonotonic behavior also exist , . . ' .
as a function either as the amplitude of the velocity change ~ °%, 0.60 120 180 2.40 3.00
in the case of a symmetric telegraph sigffa. 3a)] or as (b) log,v)

the degree of asymmetry between the two velocities change
as illustrated by the curves in Fig(l8. Finally, Fig. 3c)
shows the SR obtained fan(1/2) as a function ob _ for
different values o, /T_ [10-13.

IV. CONCLUDING REMARKS

w(1/2)

What we have shown is that for the system studied here
symmetry-breaking is required to produce SR but the spe
cific parameter in which symmetry breaking occurs does
matter. Here we have considered various aspects of cohere
SR, in terms of the MFPT for the survival of a particle.
Similar problems arise in the more commonly used definitior o, . ]
of SR in problems in terms of motion in double-well systems (¢) log o)
subject to the combination of periodic and random signals

FIG. 3. The existence of SR fat(1/2) considered as functions
of the velocities.(a) 7(1/2) plotted as a function of log(v ) for
the symmetric telegraph signal showing SR in each of the indicated
three casegb) SR demonstrated for the asymmetric telegraph sig-

0.44

V=05 nal with differing ratios of the velocitiesc) 7(1/2) plotted as a
_____ v o1 function of log (v ) again demonstrating the existence of resonant
o ’ behavior.
% o oNN v_=1.5

rrrrrrr v_=20 [14]. These authors concluded that SR does not occur in the
presence of a periodic perturbation. Another example mak-
ing the same point is that of motion in a double-well poten-
tial subject to the combination of multiplicative noise and a
multiplicative periodic force as studied by Dykmant al.
[15]. These authors found that SR could be produced by
fixing the two wells to have different depths. As a final re-

FIG. 2. Curves ofr(1/2) plotted as a function of lgg(1/T) for ~ mark, it might also be interesting to investigate whether SR
v, =1 for different values ob_. SR exists in each of the cases appears in a system in which one of the boundaries is par-
shown. tially, rather than fully, reflecting.

0.36
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APPENDIX: EXPRESSIONS FOR 7(xy) FOR THE TWO
TYPES OF BOUNDARY CONDITIONS

1. Two traps

All of the equations here are expressed in terms of dimen-
sionless variables, in which time is measured in terms of

L?/D and lengths are given in terms bf This scaling is

BRIEF REPORTS
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(v_—vy) vy [Ty
=55  ~ o |\T. L) (A2)
T+ 2 4D 1/2
__— 1,2 _T R
B=op v\ T 1] T

equivalent to setting =L = 1. The most general solution of Equation(Al) is written in terms of dimensionless variables.
Eq. (7) subject to trapping boundary conditions at both endsThe functionsR. (z) clearly satisfyR.(0)=0 andR. (1)

of the line will be expressed in terms of the functions

=1. The full expression for(x,) is

_expA.z)—1 ~ YXo(l=Xg) yviv-
R+(2) expha) -1 0 <1, (X0)= 57—~ 25 [R,(xg)—R_(Xg)]
(A1)
Ao A -R;(X0) =N+ R-(Xop)

- = +C| Xg+ , A3
B. T 0 28 (A3)

where\ . = a=* B, the parametera and 8 being wherey=(v,v_+1T) tandC is

1 ViU . .

B(v+—v)(f—v+v (coshB—coshy) — T (a sinhB— B sinha)

C=y (A4)

It is readily verified thatr(0)=7(1)=0.

2. One trap and a reflecting point

Here we set the trap at=0 and the reflecting point a&
=1. Define the constants
Q=v,v_-T, S=Q+aT(Q-1), »=T/(1+Q),

A.=N.+QB./\.,

(A5)

B=\2 exp(A.),

2Bv,v_(cosB—

coshw)+(yT) ! sinh3

Q.=SB.+QA.

and the functionsU . (Xg) =exp( X)) —%B-—1. The for-
mula for 7(xy) can be written in terms of these as

Xo(2—Xo)
2T

Q_ U, (X)) =Q U _(Xp)
TA.B_—A B,
(A6)

generalizing a result given by Doering and Gadgtip

7(X0) =7
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